WYLE LABORATORIES - RESEARCH STAFF
REPORT NO. WR 65-31

TRANSFER MATRICES AND STIFFNESS
MATRICES FOR UNIFORM BEAMS

by
Robert W. White

Work Performed Under Contract NAS 8-5384

Prepared by % %M Approved by% Zém ‘7‘6
R. W. White . McK. Eldred

Director of Research

November 1965

COPY NO. 1



SUMMARY
LY - 162

Transfer matrices and stiffness matrices are developed for uniform beams in a steady
state vibration at an arbitrary frequency. Assumptions of small bending deflection
theory are used. Effects of shear deformation, rotary inertia, and cross-sectional

warping are neglected.
In this report, the following matrices are presented:

Beam transfer and stiffness matrices without intermediate loads;

Beam transfer and stiffness matrices for intermediate concentrated force and couple;
Beam transfer matrix for several intermediate concentrated forces and moments; and
Beam transfer matrix for continuous applied force and moment distribution
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1.0 INTRODUCTION

]

.1

In the following analysis, transfer matrices and stiffness matrices are developed for
uniform beams in a state of steady vibration at an arbitrary frequency w. The usual
assumption of small bending deflection theory is used and all effects of shear deform-
ation, rotary inertia and cross-section warping are neglected.

The first transfer matrices to be developed relate the oscillatory deflection, slope,
bending moment and shear at the one end of the beam to the oscillatory deflection,
slope, bending moment and shear at the other end of the beam. From these transfer
matrices, it is possible to solve for the dynamic stiffness matrix of the beam which

relates the bending moment and shear loads at the two ends of the beam to the deflections
and slopes at the two ends.

Transfer matrices are then developed for a uniform beam with an oscillatory concentrated
force and couple acting at an arbit rary point along the span. A dynamic stiffness matrix
is also obtained for this case which relates the bending moments and shears at the two

ends of the beam, and relates the applied force and couple, to the deflections and

slopes at the two ends of the beam and at the point of application of the force and couple.
It is then shown how these transfer and stiffness matrices can be generalized to account

for an arbitrary number of forces and couples applied at arbitrary discrete points along

the span.

Finally, transfer matrices are developed for the case in which a continuous distribution of
forces and couples are applied along the span of the beam. This case is an obvious
generalization of the case of a number of concentrated forces and couples applied at
discrete spanwise locations.

Beam Transfer Matrix Without Intermediate Applied Loads

A free-body diagram of a uniform beam is shown in Figure 1 below along with the positive
directions chosen for the end deflections, slopes, bending moments and shears. The symbols

V(L)

V(0)
M(0) Ll )M(L)
[w 0)

_-)\00

e

_few
0 L

w(L)

Figure 1: Free-body Diagram of Uniform Beam With End Loads.



chosen for the end deflections and loads are

w(0), w(L) = end deflections

6(0), 6(L) = end slopes

M), M(L) = end bending moments
V), V() = end shears

The equation of motion for a uniform beam is

e wen L o AWk g 0
3 x4 El 3 t2
where
W(x,t) = beam bending deflection
p = beam mass per unit length
Ei = beam bending stiffness

For harmonic motion at frequency w, the bending deflection can be expressed
in the complex form

Wix,t) = wix) eimf (2)

Upon substituting (2) into (1), the following ordinary differential equation for
the spanwise deflection amplitude, w(x), is obtained

4
d w(z) - (_%)4 wi(x) )
d x

where the nondimensional frequency parameter a and the response frequency w are
related by the equation

a El
o= (F Y- @



The general solution of (3) can be set down immediately, and has the form

w(x) = A cosh §+ B sinh 8+ C cos §+ D sin & (5)
where
€= ax/L

A,B,C,D = deflection coefficients to be determined from
the boundary conditions on the beam.

In terms of the deflection w(x), the slope 8(x), bending moment M(x), and shear
V(x) are defined as
8(x) = d wi(x)/dx

M) = EI d2 wix)/dx? ©)

Vi) = Eld® wix)/dxs

In terms of the deflection coeffuc:ents A,B,C,D and the non-dimensional frequency
parameter a , the defieciion, siope, beuuu.g moment and chegr ot the end x = 0 are

wi) = A+C

L8() = o (B+ D)

(ZED MO = o2 (A-0) @
(3D VO = o (3-D)

The simultaneous solution of (7) for A,B,C,D gives

2
1 1 Mo
A= | w0+ — El
L a
_r 1 By
B= 7 Er'ﬁw T3 T EI
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c 1 1 L“MO)

= 7| YO -5 —Er
a
S TN (L EPORS B a7}
T2 N a 3 El
a
which in matrix form becomes
A w(0)
B L6(0) @®)
=T
C U1 2moy/E
’ 3
D -L"V(0)/E |
where the 4 x 4 matrix T] is
) a2
' 0 3 0
a
o Lo b
T = _]_ a %)
1 2 1
1 0 -5 0
a
i L
° = % 73

The deflection, slope, bending moment and shear at the end x = L, where €=a,can
be obtained from (5) and (6); and the results can be written in matrix form as follows:

w(l) A
L8(L) ool a0
LZM@)/E | *1c

v /e D




where the 4 x 4 matrix T2 is

cosh a sinh a cos a sin a
a sinh a a cosh a -asina a cos a
T, = an
2 2 2 . 2 .
a cosh a a sinh a -a cosa =-a sina
3 . 3 3.
o sinh a a cosh a a sina -a~ cos a

The beam transfer matrix between the deflections and loads at x = 0 and the deflections
and loads at x = L can be obtained by combining (8) and (10) to give

W) W(0)

Le(L) oy | L8O 2
L2M@)/E | L2M(0)/E |
-LOV(L)/El vioyi

where the transfer matrix 1(0,L) is given by the equation

To,Ln =T, " T, (13)

Multiplying, according to (13), the matrices T] and T2 as given by (9) and (11)
results in the following matrix for T(0,L):

Fy F /o Fro/a Fy/a®
e Fg Fo F,/a Fro/a’
Tou=5 |, (14
oF aFg Fo F,/a
o’F, o%F g o Fg Fo




where the functions F7 , F8 , F9 , FlO are

F7 = sinha +sina
F8 = sinha =-sina (15)
F9 = cosha +cosa
FIO = cosha -cosa

The particular notation used in (14) for the functions of a given in (15) is the same

as that used by Bishop and Johnson in Reference 1, except for the signs of F8 and FIO'

Tabulated numerical values of these functions can be found in Reference 1.

The elements of the transfer matrix, T(O,L) , are nondimensional. It is sometimes more
convenient to use the dimensional form of this matrix, denoted by T(0,L) , which is
defined by the equations

wi(l) w(0)
e(L) - TO,1 8(0) (16)
M(L) M(0)
V(L) V(0)
where T(0,L) is
I I 1 L2 ' 1 L3
o 'Sy ET S Foy tE @) R
a ' 1L | 1 L2
] TFs LT ET ) F o E &) Fio
T(OIL) =5 |
2 02 14 | I
El (D7 Fq L ELDIFg  F - F
3 | 2. | '
A RN
| 1

(17)



It is often convenient to reverse the order of the transfer matrix equation (16) and write

where the transfer matrix T(L,0) is the inverse of T(0,L), and is

T(L,0)

The nondimensional form of T(LO) is defined by the equations

where

w(0)
6(0)

M(0)
V(0)

I
Nof—

w(0)

L6(0)

T(L,0) is

L2M(0) /E |

- v e

= T(L,0)

wi(L)
(L)

M(L)
V(L)

wil)
Le(L)
L2M(L)/E |

LvuEl

(18)

|
|
|
|
[
|
! (19)
|
|
]
|
i
|
|

(20)



1.2

2 3
F9 - F7/a F]O/u - F8/a
2

- Lo s Fo  -Ffe Fypa

T(L,0) = 2 2 (21)
a F'IO -a F8 F9 - F7/a
3 2
ma f; o Fyp -ofy Fo
Beam Stiffness Matrix Without Intermediate Applied Loads

The dynamic stiffness matrix for the uniform beam without intermediate loads is a
matrix which when postmultiplied by the column matrix of the deflections and slopes
at the two ends of the beam will be equal to the column matrix of the bending moments
and shears at the two ends of the beam. Denoting the dynamic stiffness matrix by K,
it is clear that one possible definition of K is given by the equation

M(0) w(0)
V{0) e
= K (22)
M(L) w(L)
V(L) e(L)

which is often expressed altemnatively as follows:

L2mo)/E 1 w(0)
- BvoyEl | e (23)
L2muy/et - F w(l)
LBv/er Le(L)

In order to use the dbove matrix equations to determine the form of K it is convenient
to define the following matrices: '



w(0) wi(l)
d(0) = d(L) =
8(0) e()
M(0) M(L)
P(0) = P(L) =
V(0) V(L)
1 T2
T(L,0) =
Ty Ta
The 2 x 2 matrices T”, T]2 , T2] ' T22
| L
| _L
i F9 I a F7 1
MTZ| Tt AT T ety
T '8 | 9
a2 ' a
El (P Fip1 -EL (D) F
LY P S "
21772 T ’o227
E1 (&)X, ' -El(2)2F
t’) 7 : L’ 10

|

1 ,L.2 '

T (&) Fio !

LT

AU

|

F |

1 9 '
- |— ==

2 P

L '8 :

From (18) and from the matrix definitions in (24) , it follows that

d (0) T” T]2

P©) T21 T22

The two matrix equations represented by (26) are

d (0) T” d() + le P(L)

PO = Ty d) + T, PL)

d(L)
P(L)

(24)

can be obtained from (19) and are

—— — o — a—

(26)

(27)

(28)

(25)




Solving (27) for P(L) gives

l

PL) = T ]2

d (0) -  d () (29)

12

The load matrix P(0) can then be determined in terms of the deflections by
substituting (29) in (28) giving

-l
PO) = [Tm T, 11y T”] dt) + T, T ]2 d(0) (30)

Equations (29) and (30) can be combined into the single matrix equation

|
P(0) ) T_22_le_ _: _T _____ 1_2_ _'l] d©) 1))
PO T T]; T d(v)

I

,
-El (DF,, ! -El (T)F
_-I ] [N lU-; - (32)
T = e e —m = = - = -
127 hy @ r, 1 Ere)PF
1
1
where
ho = cosha cosa =1 33)
Forming the product of T22 and T;; gives
L]
El (—|°_-2h5 | 2Bl (2 h
T T-l = —l—— ——————— b - - (34)
2212~ 2h, .
2El (=) h2 : El (=) 5
|

10




where

h] = cosha sina -sinha cosa
h2 = cosha sina + sinha cosa (35)
hs = 2 sinha sina

Forming the product of - T]2 and T.” gives

|
a,2 a
(el | - e
EI(L h5 ' 2EI(L)h]
-1 _ 1\ Vo _
“T2 iy Zh, '{
a3 a,2
-2EI(—I-_-) h2 : El (L) h5
I
Forming the product T22 T;; T” and determining the quantity (T2] - T22 T;; T”) gives
|
a2 I a
. 1 -El (—L) F]0 ! El (T) F8
Ton-TaTy Ty = Wo|TT T TS,
- |
EI(L) F7 : El(L) F]0
|

Now substituting (24), (32), (34) , (36) and (37) into (31) and using the definition
for K in (22) gives the following dynamic stiffness matrix for a uniform beam
without intermediate applied loads:

{ | |
a,2 YA -2 (2 L3
(T)hs | 26D h ! 26D Fyg : 2 () Fy
|
a.3 a.2 I i3 I a2
‘ 20 hy ) DR 226D 26D Fyg
© Ty S22 (@2E ) S22 (& F : &2, : -2y
L) Fio! ) Ffg |, (T hs ! L) hy
a3 | a2 ' a.3 l a.2
S A A T I S
| | |

(38)



1.3 Beam Transfer Matrix for Intermediate Concentrated Force and Couple

A diagram of a uniform beam which has a concentrated force F and couple, or
moment, M applied at point x = x,, and bending moments and shears applied at
the ends, is shown in Figure 2 below.

e
V) Fix,) ,)/M 0

MO (. w(l)
-7 ‘ w(O) - wix,)
__-100 -7 6<x,) ! .
0 X L -

Figure 2: Diagram of Uniform Beam with Intermediate Applied
Concentrated Force and Couple.

In order to obtain the transfer maiiix from x = 0 to » = L it is necessary to develop
transfer matrices from x =0 to x = Xy = 0, from x = Xy = Otox= Xy + 0, and from

x=x,+ Otox=L. For this purpose a free-body diagram of the beam is presented

in Figure 3 which shows the end loads, internal loads and applied loads.

V(O) Vi, - V(x ) oy V( #0) Vix;40) VL)
M(O) MOS0 Mi;=0) M(x]) Mix¥0) Mk +0) ML)

Figure 3: Free-body Diagram of Beam Showing Internal
and Applied Loads.

12
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By comparison with (16), the transfer matrix equation from x = 0 to x = Xy

where

The deflections and slopes at x, -0 and x, + 0 are equal.

equilibrium of the central span between X) = 0 and x, + 0, the loads at

X

Thus the transfer matrix equation from Xy

1

=x, +0 are

w(xl - 0)
e(x] -0
M(x] -0)

V(x] - 0)

= T(O,x] - 0)

w(0)
0(0)
M(0)

V(0)

T(0, X -0) = transfer matrix obtained from (17) by

M(x] +0)

V(x] +0)

w(x.l +0)
G(x] +0)
M(x] +0)

V(x] +0)

M(x] -0) - M(x])

1

= V(x] -0) - F(x.l)

13

w(x]
0 (x]
M(xl

V(x]

1

-0)

- 0)

-0)

-0)

-Qtox, +0is

replacing L by Xy and replacing a
bya

M(x])

F(x.l)

-0is

(39)

However, from

39.1)

(40)




where | isa 4 x 4 unit matrix and I] is

By comparison with (16), the transfer matrix equation from x = xy* Otox=VL is

Substitution of (39) into (40) and substituting the resulting equation into (42) gives

o ©o ©o© o©
o o ©O. o

wilL)

0
0
1
0

o O ©

—

B0 | = Ty 40, L)

M(L)

V(L)

w(x.I + 0)
G(xl + 0)
M(x] + 0)

V(x] +0)

(41)

(42)

T(x +0, L) = transfer matrix obtained from (17) by
replacing L by (L -x ) and by
replacing a by a,.

the transfer matrix equation from x = 0 to x = L, namely

w(l)
o(L)
M(L)

V(L)

Clearly the matrix product

= T, +0, 1) -

T(x] +0,L)°
defined by (17) so that (43) can be written as

T(0, Xy 0)

14

w(0)
6(0)
M(0)

V(0)

- T(x] +0,b) |.I

0
0
M(x.l)

F(x])

T(C, xq = 0) must be equal to T(0,L) as

(43)



It is to be noted now that the tranfer matrix T(0,L) contains the quantities a and L
whereas the matrix T(x‘ + 0, L) contains the quantities a, and (L - x]) . However,

since the frequency of vibration w, the stiffness El, and the mass per unit length
are the same for the span xy * 0 to L as for the entire beam, then from the frequency

‘/_L 272 %  _a
El L-x L

1

equation (4) it follows that

or

X

- 1
az—[l- L]u (45)
Thus in T(x] +0, L), the ratio 02/(L- xl) can be replaced by a/L, but a, must
be computed from (45). Thus the matrix product T(x] +0,L) I 1

l | |

0 4 0 | P e | g’y

| | I
1 Lo ) Fy e : -7 (2 Frp @)
T+ 0,1 1 =5 : | : .

0 | O : Fo (a,) - F )
| L |

0 I 0 ! -7 Fg (@) ; Fg (ay)

The transfer matrix equation can be left in the form shown in (44) or it can be written in
the following alternate form

15

wiL) w(0) 0
e(L) 8(0) 0
= T(0,L) - T +0, 1) 1, (44)
M(L) M(0) Mix,)
V(L) V(0) Fx,)

(46)



w(L) w(0)
o0 | =10y |
M) M) “7)
V(L) V(0)
Mix,)
Flx,)

where the rectangular transfer matrix T](O,L) is defined by (48)

(See next page for Equation 48)

16
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The transfer matrix from x =L to x = 0 can be obtained by the following steps:

w(0)
6(0)
= T(x] -0,0)
M(0)
V(0)
=T(x, -0,0)

= T(x] -0,0) T(x]+0,L)

= T(L,0)

where T(L,0) is defined by (19) and |
can be obtained from (19) by replacing L by x; and replacing a by ay. The quantity

ay is defined by the equation

w(x] -0)
e(x] - 0)
M(xl - 0)
V(x] - 0)
w(xl +0)
0(x; +0)
M(x] + 0)
V(xl +0)
wil)
e(L)
M(L)
V(L)
w(l)
e(L)
M(L)
V(L)

1

18

+ T(x] - 0,0) Il

+ T(x] -0,0) Il

+ T(x] -0,0) 1 !

M(x])

F(x])

M(x])

F(x])

0
0
M(x])

F(x])

is defined by (41). The-transfer matrix T(x] -0,0)

(49)




2 1/2 % a
[J—ﬁ-u ] = T]=T (50)

Thus the matrix product T(x] -0,0) Il is equal to

0 5 0 E ()2 Fa ) i 7 & F @)

0 E 0 i Sakrikad) E ST P @) (57)
0 i 0 E Fgy (@,) E -:— Fo (o))

0 E 0 E%Fe(a]) E Fo (@y)

It is possible to write (49) in the following form

w(0) w(lL)
O =1, 0|0 (52)
M(O) M(L)
V(0) V(L)
Méx,)
Féx,)

where the rectangular transfer matrix in (52) is equal to the following:

(See next page for equation 53)

19
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1.4 Beam Stiffness Matrix For Intermediate Concentrated Force and Couple

The dynamic stiffness matrix for the beam shown in Figure 2 is a matrix which relates
the three pairs of loads acting on the beam to the three pairs of deflections at x = 0,
x =Xy and x = L. In keeping with the definition of the stiffness matrix given in (22),

the stiffness matrix for the beam segment between x = 0 and x = xq - 0 is defined
by the equation,

M(0) w(0)

Vo) = KO,x, -0 | °© (54
M(x] - 0) w(x])

V(x] - 0) e(x])

where

K(©O,x, = 0) = stiffness matrix obtained from (38) by

replacing L by X3 and ieplacing o by

a where a, = x]a/L

Similarly, the stiffness matrix for the beam segment between x = X+ Oand x =1L
is defined by the equation

M(x] + 0) w(x])
V(x, + 0) 8(x,)
1 = Ko | (55)
M(L) wi(l)
V(L) o(L)

K(x] +0,L) = stiffness matrix obtained from (38) by
replacing L by L - X and replacing a
by ay where a,=a - x]/L) .

It is convenient now to write the stiffness matrices K(O,x] - 0) and K(x] +0,L) in the forms

2]



Ko K2
KO,x, = 0) = (56)
Kol Kog
K: K:
K so0 < | 1 12
! o« &
21 22

Using a notation similar to that defined in (24), the equations (54) and (55) con
be written in the fom of simultaneous equations,

P(0) = KH d(0) + K]2 d(x]) (58)

P(x] -0 = Ky, d(0) + K22 d(x]) (59)

P(x] +0) = K'” d(x]) + K']2 d(L) (60)

P(L) = K'2] d(x]) + KZ'2 d(L) (61)
However, (39.1) can be written in a similar matrix form,

Pxy) = Plx; - 0) - Plx, +0) (62)

Substituting (59) and (60) into (62) gives

P(x]) = K2] d(0) + (K22 - K'”) d(x]) - '<']2 d(L) (63)

The stiffness matrix can now be developed immediately from (58), (61) and (63), and
is defined by the equation

[ |
{
[
P(0) Kip K ! 0 d(0)
- ' - ' |_| o
P | = | Ky Koo = Ky | =K, ] 46y (64)
| . | .
P(L) o Kyy | Ky |40
| |

In expanded form, (64) can be expressed as

22




M(0) w(0)
V(0) 6(0)
M(x]) w(x.l)
= K(0,x,,1) 69
Py O,
M(L) wil)
V(L) e(L)

where the stiffness matrix K(O,x] ,L) is given by Equation 66

(See next page for Equation 66)
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1.5 Beam Transfer Matrix for Several Intermediate Concentrated Forces and Moments

A diagram of a uniform beam which has a number of concentrated forces F(xn) and
couples M(xn), and bending moments and shears at the ends, is shown in Figure 4

below. Equation (44)

F(x ) V(l-)
F(x F(x -_—— -
M(x M(L)
M(O x M(x —————
0 X X9 — — — — — X, X

Figure 4: Diagram of Uniform Beom with Intermediate Applied Forces,
Counles, and End Loads.

gives the transfer matrix equation for a single applied force and couple at Xy This

equation is easily generalized to the following for n intermediate forces and couples
shown in Figure 4,

wi(l) w(0) 0
(L) 8(0) z 0

= T0,L) - Z Tk, +0,1) 1, »
M(L) M) r= | Mx)
V(L) V(0) V{x r)

where the transfer matrices T(xr +0,L) l] are defined as
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T(xr +,L)= —

N j—

and where a . equal

to

X
ar=[]-—L—-u]

Similarly a generalization of (49) gives the transfer matrix equation

w(0) wil)
0(0) (L) d
- 10,0 Y
M() m(L) r=1
V(0) V(L)
where the transfer matrix T(xr-0,0) . |l is
o 1o L A2E @
| l El ‘o’ "10°
|
|
| 1,L \
o 1o | -gEHE)
= A
T(xr-o,O)ll--2 | : |
0 : 0 | F9 (ar)
| I
| | o '
0 I 0 I = Fg @)
where ! |
a'r = xru/L
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1.6

Beam Stiffness Matrix for Several Intermediate Corcentrated Forces and Couples

Using the notation of (24), the stiffness matrix for t} = beam segment between x = 0
and x = xq - 0 can be obtained from (54) and (56) a. d is defined by the equation

!
P(0) Kiy@y) 1 K, @y) d(0)
I T Tk LI Ak I B 73)
Plx, - 0 Kpy @) 1 K, @ d
by = 0) 21 @) | Ky (@) ¢ ,)

|
The notation Kii(q ']') denotes that the matrices Kii , as defined by (54) and (56) ,

are functions of L/a and a'' where

1
a']' = x]a/L (74)
The load transfer equation across the point x; can be written in a manner similar

to (62), namely

Plx)) = Pl, = 0) = Pbx; +0) (62)

The stiffness matrix equation for the beam segment between x=x, + 0 and x = x,, - 0

1 2
is similar to that defined by (60), nameiy,

|
{
P(X.I + 0) _ K.” (02 ) I K-|2 (02) ] d(X])
i { 75)
P(x2 -0) K2.| (c'2') : d(x2)
|
where
ali
2 a
—_— (76)
Xy = Xy L
From (73) and (75), the load matrix P(x]) in (62) can be expressed in the form
! |
! "y _ ny |- 1
Poey) = [ Kgp @7 1Kpp bay) = Kyy o) = Kypleg)) 1O
. | a) | @
d(x2)
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K(@,x

Equation (77) is easily generalized to give the stiffness matrix equation for the

Ioadscfxr , (1£r<n)
! {
' 1 1 !
P(xr) = K2-‘ (al'): K22 (al")- K]'I (ar+]):"' K]2
1 (

where Xg = 0 and X +1 =L, and where

PO) 4(0)
Pix,) dbcy)
i: = K(O,x.',...,xn,i.) l:
Pix ) dx,)
P 4

where the stiffness matrix K(O,x] g ,xn,L) is

Eo

&

£y O

,...,xn,L)= ~

d(xr -1
d(xr)

d(xr + ])

(80)

81)
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1.7

and where the submatrices Ei are

[}
S ST O K12(°"1')|
E= Ky @) ) Ky @ - Ky Ly E'K12(°"r'+1) ;o 1srn
"t ' "
SRR LYY (°'n+1): Kog 1))
a']' = x]a/L
a;' = (xr-xr-])a/L (83)
a'' = (L-xn)q/L
(7) hela™ b2 (T hi@")
Kyl = -5'11%(‘?'-')- —Z_La_3§h_ —..—_f - —aL2_hL T |
(7 hye 1 (D) hs e
2C)F @ 1 2T) Faat)
El L) Fro L) Fg
K" = g | = =20 R A
1270 Bl a0 e 1 2D F e
a.2 : o (84)
S N AU P BT
250 B e LA R e
a,2 1) ! a "
o £l Lk T 2 e
22 2h @) a3 a7,

Beam Transfer Matrix for Continuous Applied Force and Moment Distribution

A diagram of a uniform beam which has a continuous distribution of applied forces and
moments along the span, and bending moments and shears at the beams ends, is shown
in Figure 5 below. The beam transfer matrix for this
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Figure 5: Diagram of Uniform Beam with End Loads and Continuous
Distributions of Applied Forces and Moments

case can be developed by allowing the number of discrete applied forces and couples
shown in Figure 4 to increase without bound, and passing to the limit in (67) and (70).

Let the continuous force per unit length f(x), and the continuous moment per unit
length m(x), be expressed in the form

flx) = fowetx)
m(x) = m, g, &) @85)

where tpf(x) and q:m(x) are distribution functions which have a maximum value of
unity. The quantities fo and mo thus represent the maximum amplitude along the

span of the applied force and moment distribution respectively.

The incremental force dF(x) and the incremental moment dM(x) acting over an
incremental length dx at x are -
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dF(x)

H

f.p(x) dx
0'f (86)

dM(x) mg ¥, (x) dx

Substituting dF(x) and DM(x) for F(xr) and M(xr) in (67) and passing to the

limit as dx approaches zero gives

wi(l) w(0) 0
L
e() 8(0) 0
- T0,L) N ST I - dx
M(L) M(0) 0 fo ¥ )
V(L) V(0) mo ¥ &)

The transfer matrix T(xr +0, L) |] in (67) contains the parameter a which is

defined by (69). In the limiting case, a will be replaced by B where
[
B = [1 - -’C— a ] (88)

Thus B is a continuous function of x. From a knowledge of the transfer matrix
defined in (68), the transfer matrix equation (87) can be written in the form

w(L) w(0) 0
Wl=ton | O] 10| ° ©9)
M(L) M(0) mg
VL) V() A

where the "continuous" transfer matrix Tc is equal to
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| ! L
o Lo : (=) [ 2460 Fyole) o
I
! Lk
0o, 0 : ) ({ 96 Fo(B) dx
_1 I
0= ' I L
N L
0
o
| | x) Fy (B)
0 | 0 T P (x) dx
| | J f
| |
Similarly, in the limit (70) becomes
w(0) w(l)
8(0) a(L)
= T(L.0) + T 0
M(0) M(L) §
V(0) V(L)

where the transfer matrix TC(O) can be obtained from (71):

ml
—

Qll—

L
f (x) FS(B) dx
0

L
1 L2
-2 () {wm(x)F]o(g)dx

L L

L
[ 4t Fo © &

)

l l L |
0 | 0 :ELI =)’ IRCLGLY £ o 0Fg(y)
!
l | L | L
| I1,L r 1,12
o 0 g {%(x)@(y)dx BT w00 ) o
1
T.0) == I | |
| | L | L L
o 1o I 9 Foly) dx , ;{q;m(x) F (y) dx
| | |
| I 4 & 1L
0 | 0 | T-!; tpf(x) Fg (y) dx | _glpm(x) F9(y) dx
where from (72) ‘
y = ax/L (93)

(90)



